s — Approximations of Special Functions s17dle

NAG C Library Function Document

nag complex hankel (s17dlc)

1 Purpose

nag_complex hankel (s17dlc) returns a sequence of values for the Hankel functions H (Vlln(z) or H fﬁn(z)
for complex z, non-negative v and n =0,1,..., N — 1, with an option for exponential scaling.

2 Specification

void nag_complex_hankel (Integer m, double fnu, Complex z, Integer n,
Nag_ScaleResType scal, Complex cy[], Integer *nz, NagError *fail)

3 Description

nag_complex_hankel (s17dlc) evaluates a sequence of values for the Hankel function HV (2) or H?(2),
where z is complex, —7m < arg z < 7, and v is the real, non-negative order. The N-member sequence is

generated for orders v, v+ 1,...,v+ N — 1. Optionally, the sequence is scaled by the factor e % if the
function is H'"(2) or by the factor e’* if the function is H?(2).

Note: although the function may not be called with v less than zero, for negative orders the formulae
HY(2) = " HV(2), and H)(2) = ¢ " H'?(z) may be used.

The function is derived from the routine CBESH in Amos (1986). It is based on the relation

, 1
H(2) = - e 7K (267,
p

where p = % if m=1and p= —% if m =2, and the Bessel function K, (z) is computed in the right

half-plane only. Continuation of K, (2) to the left half-plane is computed in terms of the Bessel function
I,(z). These functions are evaluated using a variety of different techniques, depending on the region
under consideration.

When N is greater than 1, extra values of H g’"’)(z) are computed using recurrence relations.

For very large |2| or (v+ N — 1), argument reduction will cause total loss of accuracy, and so no
computation is performed. For slightly smaller |z| or (v + N — 1), the computation is performed but
results are accurate to less than half of machine precision. 1f |z| is very small, near the machine underflow
threshold, or (¥ + N — 1) is too large, there is a risk of overflow and so no computation is performed. In
all the above cases, a warning is given by the function.

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Amos D E (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and
non-negative order ACM Trans. Math. Software 12 265-273

S Parameters

1: m — Integer Input
On entry: the kind of functions required.
If m = 1, the functions are H'"(2).

[NP3645/7] s17dlc.1

s17dlc NAG C Library Manual

If m = 2, the functions are H'?(2).

Constraint: m =1 or m = 2.

2: fnu — double Input
On entry: the order, v, of the first member of the sequence of functions.

Constraint: fnou > 0.0.

3: z — Complex Input
On entry: the argument z of the functions.

Constraint: z # (0.0, 0.0).

4: n — Integer Input

On entry: the number, N, of members required in the sequence H l(,m>(z), H Z(,T)l(z), o H (y'i)Nfl (2).

Constraint: n > 1.

5: scal — Nag ScaleResType Input
On entry: the scaling option.

If scal = Nag_UnscaleRes, the results are returned unscaled.

If scal = Nag_ScaleRes, the results are returned scaled by the factor e when m = 1, or by the
factor ¢ when m = 2.

Constraint: scal = Nag_UnscaleRes or Nag_ScaleRes.

6: cy[n] — Complex Output
On exit: the N required function values: ey[i — 1] contains H 1(2);;1(75% fori=1,2,...,N.
7: nz — Integer * Output

On exit: the number of components of ¢y that are set to zero due to underflow. If nz > 0, then if
Imz>0.0 and m=1, or Imz < 0.0 and m = 2, elements cy[0],cy[l],...,cy[nz — 1] are set to
zero. In the complementary half-planes, nz simply states the number of underflows, and not which
elements they are.

8: fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT
On entry, m has illegal value: m = (value).

On entry, n = (value).
Constraint: n > 1.

NE_COMPLEX_ZERO
On entry, z = (0.0,0.0).

NE_OVERFLOW_LIKELY
No computation because abs(z) = (value) < (value).

No computation because fnu +n — 1 = (value) is too large.

s17dlc.2 [NP3645/7]

s — Approximations of Special Functions s17dlc

NE_REAL
On entry, fnu = (value).
Constraint: fnu > 0.
NE_TERMINATION_ FAILURE

No computation — algorithm termination condition not met.

NE_TOTAL_PRECISION LOSS
No computation because abs(z) = (value) > (value).

No computation because fnu +n — 1 = (value) > (value).

NW_SOME_PRECISION_LOSS
Results lack precision, fnu +n — 1 = (value) > (value).

Results lack precision because abs(z) = (value) > (value).

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

All constants in nag_complex hankel (s17dlc) are given to approximately 18 digits of precision. Calling
the number of digits of precision in the floating-point arithmetic being used ¢, then clearly the maximum
number of correct digits in the results obtained is limited by p = min(¢, 18). Because of errors in argument
reduction when computing elementary functions inside nag_complex_hankel (s17dlc), the actual number of
correct digits is limited, in general, by p — s, where s &~ max(1, |log,, |z||,|log;, |) represents the number
of digits lost due to the argument reduction. Thus the larger the values of |z| and v, the less the precision
in the result. If nag complex hankel (s17dlc) is called with n > 1, then computation of function values
via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to nag complex hankel
(s17dlc) with different base values of v and different n, the computed values may not agree exactly.
Empirical tests with modest values of v and z have shown that the discrepancy is limited to the least
significant 3 — 4 digits of precision.

8 Further Comments

The time taken by the function for a call of nag_complex hankel (s17dlc) is approximately proportional to
the value of n, plus a constant. In general it is much cheaper to call nag_complex hankel (s17dlc) with n
greater than 1, rather than to make N separate calls to nag complex hankel (s17dlc).

Paradoxically, for some values of z and v, it is cheaper to call nag _complex_hankel (s17dlc) with a larger
value of n than is required, and then discard the extra function values returned. However, it is not possible
to state the precise circumstances in which this is likely to occur. It is due to the fact that the base value
used to start recurrence may be calculated in different regions for different n, and the costs in each region
may differ greatly.

9 Example

The example program prints a caption and then proceeds to read sets of data from the input data stream.
The first datum is a value for the kind of function, m, the second is a value for the order fnu, the third is a
complex value for the argument, z, and the fourth is a character value used as a flag to set the parameter

[NP3645/7] s17dlc.3

s17dlc NAG C Library Manual

scal. The program calls the function with n = 2 to evaluate the function for orders fnu and fnu + 1, and it
prints the results. The process is repeated until the end of the input data stream is encountered.

9.1 Program Text

/* nag_complex_hankel (sl7dlc) Example Program
*

* Copyright 2002 Numerical Algorithms Group.
*

* Mark 7, 2002.

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>

int main(void)

{
Complex z, cyl[2];
double fnu;
const Integer n = 2;
Integer m, nz;
Nag_ScaleResType scal_enum;
char scal;
Integer exit_status = EXIT_SUCCESS;
NagError fail;
INIT FAIL(fail);
/* Skip heading in data file #*/
Vscanf ("$*[*\nl") ;
Vprintf ("sl1l7dlc Example Program Results\n");
Vprintf("Calling with n = %1d\n", n);
Vprintf (" m fnu z scal cyl[0] cyl[1]
nz\n") ;
while (scanf (" %1d %1f (%1f,%1f) ’'%c’%*["\n] ", &m, &fnu, &z.re, &z.im, &scal)
= EOF)
{
/* Convert scal character to enum */
if (scal == ’'s’)
{
scal_enum = Nag_ScaleRes;
¥
else if (scal == 'u’)
{
scal_enum = Nag_UnscaleRes;
b
else
{
Vprintf ("Unrecognised character for Nag_ScaleResType type\n");
exit_status = -1;
goto END;
b
sl1l7dlc(m, fnu, z, n, scal_enum, cy, &nz, &fail);
if (fail.code == NE_NOERROR)
Vprintf (" %1d %7.4f (%7.3f,%7.3f) "sc’ (%7.3f,%7.3f) (%7.3f,%7.3f)
%1d\n",
m, fnu, z.re, z.im, scal, cy[0O].re, cy[0].im, cy[1l].re, cy[l].im,
nz) ;
else
{
Vprintf ("Error from sl7dlc.\n%s\n", fail.message);
exit_status = 1;
goto END;
b
}
END:

return exit_status;

s17dlc.4 [NP3645/7]

s — Approximations of Special Functions s17dlc

9.2 Program Data

sl17d1lc Example Program Data

1 0.00 (0.3, 0.4) "u’
1 2.30 (2.0, 0.0) ru’
1 2.12 (-1.0, 0.0) "u’
2 6.00 (3.1, -1.06) "a’
2 6.00 (3.1, -1.06) s’ - Values of m, fnu, z and scal

9.3 Program Results

sl7dlc Example Program Results
Calling with n = 2

m fnu Z scal cyl[0] cyl[1] nz
1 0.0000 (0.300, 0.400) ua’ (0.347, -0.559) (-0.791, -0.818) 0
1 2.3000 (2.000, 0.000) 'u" (0.272, -0.740) (0.089, -1.412) O
1 2.1200 (-1.000, 0.000) "ua’ (-0.772, -1.693) (2.601, 6.527) 0
2 6.0000 (3.100, -1.600) 'u’ (-1.371, -1.280) (=-1.491, -5.993) O
2 6.0000 (3.100, -1.600) 's’ (7.050, 6.052) (8.614, 29.352) 0

[NP3645/7] s17dlc.5 (last)

	s17dlc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	m
	fnu
	z
	n
	scal
	cy
	nz
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_COMPLEX_ZERO
	NE_OVERFLOW_LIKELY
	NE_REAL
	NE_TERMINATION_FAILURE
	NE_TOTAL_PRECISION_LOSS
	NW_SOME_PRECISION_LOSS
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

